翻訳と辞書
Words near each other
・ Tricomi
・ Tricomia
・ Tricomi–Carlitz polynomials
・ Tricon
・ Tricondyla
・ Tricondyla aptera
・ Tricondyloides
・ Triconex
・ Triconodontidae
・ Triconolestes
・ Tricontinental
・ Tricontinental Chile
・ Tricorder
・ Tricorder X Prize
・ Tricordia
Tricorn (mathematics)
・ Tricorn Centre
・ Tricorn Mountain
・ Tricorn Peak
・ Tricorne
・ Tricornenses
・ Tricorner Knob
・ Tricornis
・ Tricornis oldi
・ Tricornis tricornis
・ Tricoryne
・ Tricorynus
・ Tricosylic acid
・ Tricot
・ Tricot (band)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Tricorn (mathematics) : ウィキペディア英語版
Tricorn (mathematics)

In mathematics, the tricorn, sometimes called the Mandelbar set, is a fractal defined in a similar way to the Mandelbrot set, but using the mapping z \mapsto \bar^2 + c instead of z \mapsto z^2 + c used for the Mandelbrot set. It was introduced by W. D. Crowe, R. Hasson, P. J. Rippon, and P. E. D. Strain-Clark.〔http://iopscience.iop.org/article/10.1088/0951-7715/2/4/003/meta;jsessionid=C9B611C5CF44A8CE77C7344996DADD0C.c1〕 John Milnor found tricorn-like sets as a prototypical configuration in the parameter space of real cubic polynomials, and in various other families of rational maps.〔http://projecteuclid.org/euclid.em/1048709112〕
The characteristic three-cornered shape created by this fractal repeats with variations at different scales, showing the same sort of self-similarity as the Mandelbrot set. In addition to smaller tricorns, smaller versions of the Mandelbrot set are also contained within the tricorn fractal.
==Formal definition==
The tricorn T is defined by a family of quadratic antiholomorphic polynomials
:f_c:\mathbb C\to\mathbb C
given by
:f_c: z\mapsto \bar^2 + c,
where c is a complex parameter. For each c, one looks at the forward orbit
:(0, f_c(0), f_c(f_c(0)), f_c(f_c(f_c(0))), \ldots)
of the critical point 0 of the antiholomorphic polynomial p_c. In analogy with the Mandelbrot set, the tricorn is defined as the set of all parameters c for which the forward orbit of the critical point is bounded. This is equivalent to saying that the tricorn is the connectedness locus of the family of quadratic antiholomorphic polynomials; i.e. the set of all parameters c for which the Julia set J(f_c) is connected.
The higher degree analogues of the tricorn are known as the multicorns.〔http://www.worldscientific.com/doi/abs/10.1142/S0218127403008259〕 These are the connectedness loci of the family of antiholomorphic polynomials f_c: z\mapsto \bar^d + c.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Tricorn (mathematics)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.