|
In mathematics, the tricorn, sometimes called the Mandelbar set, is a fractal defined in a similar way to the Mandelbrot set, but using the mapping instead of used for the Mandelbrot set. It was introduced by W. D. Crowe, R. Hasson, P. J. Rippon, and P. E. D. Strain-Clark.〔http://iopscience.iop.org/article/10.1088/0951-7715/2/4/003/meta;jsessionid=C9B611C5CF44A8CE77C7344996DADD0C.c1〕 John Milnor found tricorn-like sets as a prototypical configuration in the parameter space of real cubic polynomials, and in various other families of rational maps.〔http://projecteuclid.org/euclid.em/1048709112〕 The characteristic three-cornered shape created by this fractal repeats with variations at different scales, showing the same sort of self-similarity as the Mandelbrot set. In addition to smaller tricorns, smaller versions of the Mandelbrot set are also contained within the tricorn fractal. ==Formal definition== The tricorn is defined by a family of quadratic antiholomorphic polynomials : given by : where is a complex parameter. For each , one looks at the forward orbit : of the critical point of the antiholomorphic polynomial . In analogy with the Mandelbrot set, the tricorn is defined as the set of all parameters for which the forward orbit of the critical point is bounded. This is equivalent to saying that the tricorn is the connectedness locus of the family of quadratic antiholomorphic polynomials; i.e. the set of all parameters for which the Julia set is connected. The higher degree analogues of the tricorn are known as the multicorns.〔http://www.worldscientific.com/doi/abs/10.1142/S0218127403008259〕 These are the connectedness loci of the family of antiholomorphic polynomials . 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Tricorn (mathematics)」の詳細全文を読む スポンサード リンク
|